SQFlex
Renewable-energy based water supply systems
50/60 Hz
1. Product data
- Introduction
- Applications
- Features and benefits
- Performance range
- System overview
- Identification

2. Construction
- Material specification, helical rotor pump
- Material specification, centrifugal pump
- Material specification, motor

3. Selection
- Sizing of SQFlex system
- Application examples

4. Solar panel wiring
- Methods of solar panel wiring

5. Performance curves
- Curve conditions
- Curve charts

6. Technical data
- Dimensions and weights
 - SQF pump
 - Motor
 - CU 200 SQFlex control unit
 - IO 50 SQFlex switch box
 - IO 101 SQFlex switch box
 - IO 102 SQFlex breaker box
 - Charge controller

7. Accessories
- CU 200 SQFlex control unit
- IO 50 SQFlex switch box
- IO 101 SQFlex switch box
- IO 102 SQFlex breaker box
- Charge controller
- Submersible drop cables
- Whisper 200 wind turbine
- GF100 solar panel

8. Further product documentation
- WebCAPS
- WinCAPS
1. Product data

Introduction

The SQFlex system is a reliable water supply system based on renewable energy sources, such as solar and wind energy. The SQFlex system incorporates an SQF submersible pump.

Very flexible as to its energy supply and performance, the SQFlex system can be combined and adapted to any need according to the conditions on the installation site.

The system components are

- SQF submersible pump
- CU 200 SQFlex control unit
- IO 50 SQFlex switch box
- IO 101 SQFlex switch box
- IO 102 SQFlex breaker box
- charge controller
- energy supply:
 - solar panels
 - wind turbine
 - generator
 - batteries.

SQF submersible pump

The SQF pump range comprises two pump technologies:

- the helical rotor pump (3”) for high heads and small flows.
- the centrifugal pump (4”) for low heads and large flows.

The performance curves in fig. 1 illustrates the pump performance for the two pump models.

The SQF pump complete comprises:

- motor
- 6 ft (1.8 m) cable with water level electrode and socket
- cable guard.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Pump size</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 SQF 2</td>
<td>3”</td>
<td>95027332</td>
</tr>
<tr>
<td>3 SQF 3</td>
<td>3”</td>
<td>95027333</td>
</tr>
<tr>
<td>6 SQF 2</td>
<td>3”</td>
<td>95027334</td>
</tr>
<tr>
<td>6 SQF 3</td>
<td>3”</td>
<td>96834840</td>
</tr>
<tr>
<td>11 SQF 2</td>
<td>3”</td>
<td>95027335</td>
</tr>
<tr>
<td>16 SQF 10</td>
<td>4”</td>
<td>95027350</td>
</tr>
<tr>
<td>25 SQF 3</td>
<td>4”</td>
<td>95027351</td>
</tr>
<tr>
<td>25 SQF 7</td>
<td>4”</td>
<td>95027353</td>
</tr>
<tr>
<td>40 SQF 3</td>
<td>4”</td>
<td>95027354</td>
</tr>
<tr>
<td>40 SQF 5</td>
<td>4”</td>
<td>95027355</td>
</tr>
<tr>
<td>60 SQF 3</td>
<td>4”</td>
<td>95027443</td>
</tr>
</tbody>
</table>

Currently the complete range consists of six centrifugal pumps and five helical rotor pumps. The centrifugal pumps are adapted from Grundfos’ present 4” SP range (16S, 25S, 40S, and 60S). These pumps are used when lower heads and higher flow rates are required.

The positive displacement helical pump ends are 3” in diameter and available in five models ranging from 3 to 11 gpm (0.68 to 2.50 m³/h). These are designed for higher head and lower flow requirements. The pump rotor is a single-twisted helix (spiral) made of hard-chromium plated stainless steel. During operation, the rotor rotates eccentrically in a double helical elastic stator.
Motor
The motor has been developed specifically for the SQFlex system and is designed according to the permanent-magnet principle with built-in electronic unit and is available in only two sizes.

The motor speed range is 500-3600 rpm, depending on power input and load.

The motor is constructed in 304 stainless steel.

Max. ratings are as follows:

- Maximum power input (P_I) of 1400 W
- Maximum current of 8.4 A
- Maximum speed of 3600 rpm

The pump delivers its maximum performance when one of the above parameters is reached.

Fig. 3 Wiring diagram

The motor is to be connected to the power supply as shown in fig. 3.

As the integrated electronic unit enables the motor to handle both DC and AC supply voltages, it makes no difference how the wires "+" and "-" or "N" and "L" are connected.

Supply voltage
Flexible as regards power supply and power range, the motor can be supplied with either DC or AC voltage:

- 30-300 VDC, PE
- 1 x 90-240 VDC $-10\% / +6\%$, 50/60 Hz, PE.

IO 101 SQFlex switch box
The IO 101 is an on/off switch box designed for opening and closing the system power supply and is used in solar-powered SQFlex systems with a back-up generator.

IO 102 SQFlex breaker box
The IO 102 is an on/off breaker box designed for opening and closing the system power supply and is used in wind-powered SQFlex systems or wind- and solar-powered SQFlex systems.

The IO 102 makes it possible to slow down or stop the wind turbine.

Charge controller
The charge controller is used when a battery backup system is installed with an SQFlex pumping system.

Solar modules
Grundfos' solar modules have been developed specifically for the SQFlex system. The solar modules are equipped with plugs and sockets enabling easy connection in series or parallel.

For further information on solar modules, please contact your local Grundfos company.

Generator
In case the power supply from its primary source of energy is temporarily insufficient or unavailable, the SQFlex system can be powered by a generator.

Batteries
The SQFlex system can be powered by batteries with a voltage supply of 30-300 VDC, maximum current 8.4 A.
Application
Being designed for continuous as well as intermittent operation, the SQFlex system is especially suitable for water supply applications in remote locations, such as
- villages, schools, hospitals, single-family houses, etc.
- farms
 - watering of cattle
 - irrigation of fields and greenhouses
- game parks and game farms
 - watering applications
- conservation areas
 - surface water pumping
 - floating pump installations for pumping of water from ponds and lakes.

Pumped liquids
SQF pumps are applicable in thin, clean, non-aggressive, non-explosive liquids, not containing solid or long-fibered particles larger than sand grains.

- pH value: 5 to 9.
- Liquid temperature: +32 °F to +104 °F (0 °C to +40 °C)

The pump can run at free convection (~ 0 ft/s) at maximum 104 °F (+40 °C).

Sand content
Maximum sand content: 50 ppm.

A higher sand content will reduce the pump life considerably due to wear.

Salt content (chloride ions Cl⁻)
The table below shows the resistance of stainless steel to Cl⁻. The figures in the table are based on a pumped liquid with a pH value of 5 to 9.

<table>
<thead>
<tr>
<th>Stainless steel AISI</th>
<th>Cl⁻ content [ppm]</th>
<th>Liquid temperature [°F (°C)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>304</td>
<td>0-300</td>
<td>< 104 (40)</td>
</tr>
<tr>
<td></td>
<td>300-500</td>
<td>< 86 (30)</td>
</tr>
</tbody>
</table>

High efficiency
The MSF 3 motor is a permanent-magnet motor (PM motor) featuring a higher efficiency within the power range compared to a conventional asynchronous motor.

In addition to this, the segmented motor stator contributes considerably to the high efficiency.

The MSF 3 motor is furthermore characterized by a high locked-rotor torque even at low power supply.
Overvoltage and undervoltage protection

Overvoltage and undervoltage may occur in case of unstable power supply or a faulty installation.

The pump will be cut out if the voltage falls outside the permissible voltage range. The motor is automatically cut in when the voltage is again within the permissible voltage range. Therefore no extra protection relay is needed.

Note: The MSF 3 motor is protected against transients from the power supply according to IEC 60664-1 "overvoltage category III" (4 kV). In areas with high lightning intensity, external lightning protection is recommended.

Overload protection

In case the upper load limit is exceeded, the motor will automatically compensate for this by reducing the speed. If the speed falls below 500 rpm, the motor will be cut out automatically.

The motor will remain cut out for 10 seconds after which period the pump will automatically attempt to restart.

The overload protection prevents burnout of the motor. Consequently, no extra motor protection is required.

Overtemperature protection

A permanent-magnet motor gives off very little heat to its surroundings. In combination with an efficient internal circulation system leading the heat away from the rotor, stator and bearings, this fact ensures optimum operating conditions for the motor.

As an extra protection, the electronic unit has a built-in temperature sensor. When the temperature rises above 185 °F (85°C), the motor is automatically cut out. When the temperature has dropped to 165 °F (73 °C), the motor is automatically cut in again.

Maximum Power Point Tracking (MPPT)

The built-in electronic unit gives the SQFlex system a number of advantages compared to conventional products. One of these advantages is the built-in microprocessor with MPPT (MPPT = Maximum Power Point Tracking).

Thanks to the MPPT-function, the pump duty point is continuously optimized according to the input power available. MPPT is only available for pumps connected to DC supply.

Wide voltage range

The wide voltage range enables the motor to operate at any voltage from 30-300 VDC or 90-240 VAC. This makes installation and sizing especially easy.

Built-in sand shield

The built-in sand shield prevents sand damage to the pump and motor by slinging it out through the oval slots located at the base of the pump end.

Reliability

The MSF 3 motor has been developed with a view to high reliability achieved through the following features:

- carbon/ceramic bearings
- excellent starting capabilities
- various protection facilities.

Simple installation

The following features ensure simple installation of the SQF pump:

- low weight ensuring user-friendly handling
- installation in 3", 4" or larger boreholes
- only an on/off switch is needed, which means that no extra motor starter / starter box is necessary.

Note: Horizontal installation requires the water level electrode to be placed above the pump to ensure the dry-running protection.

Ease of service

The modular pump and motor design facilitates installation and service. The cable and the end cover with socket are fitted to the pump with screws which enable replacement.
Performance range

Note: The curves must not be used as guarantee curves.
System overview

The SQFlex system can be used in a number of combinations as shown in the table below.

<table>
<thead>
<tr>
<th>System</th>
<th>consists of the following components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pump</td>
</tr>
<tr>
<td>SQFlex Solar</td>
<td></td>
</tr>
<tr>
<td>See page 14.</td>
<td></td>
</tr>
<tr>
<td>SQFlex Solar - with CU 200 and level switch</td>
<td></td>
</tr>
<tr>
<td>See page 15.</td>
<td></td>
</tr>
<tr>
<td>SQFlex Solar - with back-up generator</td>
<td></td>
</tr>
<tr>
<td>See page 16.</td>
<td></td>
</tr>
<tr>
<td>SQFlex Solar - with back-up batteries</td>
<td></td>
</tr>
<tr>
<td>See page 17.</td>
<td></td>
</tr>
<tr>
<td>SQFlex Wind</td>
<td></td>
</tr>
<tr>
<td>See page 18.</td>
<td></td>
</tr>
<tr>
<td>SQFlex Wind - with CU 200 and level switch</td>
<td></td>
</tr>
<tr>
<td>See page 19.</td>
<td></td>
</tr>
<tr>
<td>SQFlex Combo - combination of solar and wind energy</td>
<td></td>
</tr>
<tr>
<td>See page 20.</td>
<td></td>
</tr>
<tr>
<td>SQFlex Combo - with CU 200 and level switch</td>
<td></td>
</tr>
<tr>
<td>See page 21.</td>
<td></td>
</tr>
<tr>
<td>SQFlex system - with generator as power supply</td>
<td></td>
</tr>
<tr>
<td>See page 22.</td>
<td></td>
</tr>
</tbody>
</table>

* For number of solar modules required, please consult the sizing tool in Grundfos WinCAPS/WebCAPS.
* ** Optional.
Identification

Type key for helical rotor pumps

<table>
<thead>
<tr>
<th>Example</th>
<th>6</th>
<th>SQF -2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated flow at 3000 rpm [gpm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of stages</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type key for centrifugal pumps

<table>
<thead>
<tr>
<th>Example</th>
<th>25</th>
<th>SQF -3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated flow of corresponding SP pump [gpm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of stages</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Construction

Material specification, helical rotor pump

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Component</th>
<th>Material</th>
<th>SQF</th>
<th>AISI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Valve casing</td>
<td>Polyamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>Discharge chamber</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>1d</td>
<td>O-ring</td>
<td>NBR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Valve cup</td>
<td>Polyamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Valve seat</td>
<td>NBR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Flange, upper</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>Circclip</td>
<td>Stainless spring steel</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Pump stator</td>
<td>Stainless steel/EPDM</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Pump rotor</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Torsion shaft</td>
<td>Stainless steel</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Valve spring</td>
<td>Stainless spring steel</td>
<td>316 LN</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Outer sleeve</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Valve guide</td>
<td>Polyamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>159c</td>
<td>Sand shield</td>
<td>Polyamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cable guard</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Screws for cable guard</td>
<td>Stainless steel</td>
<td>316</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 8 Example: 6 SQF-2
Material specification, centrifugal pump

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Component</th>
<th>Material</th>
<th>SQF</th>
<th>AISI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Valve casing</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chamber, top</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Top bearing</td>
<td>NBR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Neck ring</td>
<td>NBR/PPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bearing</td>
<td>NBR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Chamber, complete</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Nut for split cone</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Split cone</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Impeller</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Inlet part</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>14a</td>
<td>Connecting piece, complete (MSF 3 adapter)</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Strainer</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Shaft, cylindrical</td>
<td>Stainless steel</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Strap</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Cable guard, pump</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>18c</td>
<td>Cable guard, motor</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Nut for strap</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>19a</td>
<td>Nut</td>
<td>Stainless steel</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Coupling with nut</td>
<td>Stainless steel</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>24a</td>
<td>Supporting ring</td>
<td>Stainless steel</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>24b</td>
<td>Spline protector</td>
<td>NBR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Retainer for neck ring, complete</td>
<td>Stainless steel</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Stop ring (only 25 SQF and 60 SQF)</td>
<td>Carbon/graphite PTFE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Screws for cable guard</td>
<td>Stainless steel</td>
<td>316</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 9 Example: 60 SQF-3
Material specification, motor

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Component</th>
<th>Material</th>
<th>MSF 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>Stator with sleeve, complete</td>
<td>Stainless steel</td>
<td>304</td>
</tr>
<tr>
<td>202</td>
<td>Rotor</td>
<td>Stainless steel</td>
<td>304</td>
</tr>
<tr>
<td>202a</td>
<td>Stop ring</td>
<td>PP</td>
<td></td>
</tr>
<tr>
<td>202c</td>
<td>Shaft end</td>
<td>Stainless steel</td>
<td>316</td>
</tr>
<tr>
<td>203</td>
<td>Thrust bearing, stationary</td>
<td>Stainless steel/carbon</td>
<td>316</td>
</tr>
<tr>
<td>205</td>
<td>Bearing plate with radial bearing</td>
<td>Silicon carbide</td>
<td>304</td>
</tr>
<tr>
<td>206</td>
<td>Thrust bearing, rotating</td>
<td>Stainless steel/aluminium oxide Al_2O_3</td>
<td>316</td>
</tr>
<tr>
<td>220</td>
<td>Motor cable with plug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222a</td>
<td>Filling plug</td>
<td>NBR</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Electronic unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>O-ring</td>
<td>NBR</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Top cover</td>
<td>NBR</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Shaft seal</td>
<td>NBR</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>Thrust-bearing housing</td>
<td>Stainless steel</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>Four screws (M4)</td>
<td>Stainless steel</td>
<td>316</td>
</tr>
</tbody>
</table>

Fig. 10 MSF 3
3. Selection

Sizing of SQFlex system
Grundfos has developed a PC-based sizing tool enabling the sizing of SQFlex systems.

The sizing tool is integrated in Grundfos WinCAPS and covers both solar- and wind-powered systems. Visit Grundfos.com to use WebCAPS, our online version of WinCAPS.

The following three parameters must be known for the sizing of the optimum SQFlex system:
• installation location
• maximum head required
• quantity of water required.

With a view to the sizing of a correct solar-powered SQFlex system, the world has been divided into six regions:
• North America
• South America
• Australia/New Zealand
• Asia/Pacific
• Southern Africa
• Europe/Middle East/Northern Africa.

Each region is divided into a number of zones according to the solar radiation in kWh/m² per day.

Voltage effect on pump efficiency
The pump efficiency can vary quite a bit depending on input voltage. This chart shows the dropoff in efficiency as the voltage gets lower. For example, if you have two systems with the exact same wattage rating, but System A is running at 120V and System B is running at 35V, System A will produce 20 % more water than System B.

<table>
<thead>
<tr>
<th>Panel output voltage</th>
<th>(% loss in gallons/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120V - 300V</td>
<td>- 0 %</td>
</tr>
<tr>
<td>90V</td>
<td>- 5 %</td>
</tr>
<tr>
<td>60V</td>
<td>- 10 %</td>
</tr>
<tr>
<td>35V</td>
<td>- 20 %</td>
</tr>
</tbody>
</table>

SQ Flex optimal efficiency
Application examples

SQFlex Solar
The SQFlex Solar system is the simplest of the range of SQFlex systems.

Benefits
• Easy to install
• Maintenance confined to periodic cleaning of the solar panels
• Few and simple components.

The protective circuit incorporated in the motor electronic unit cuts out the pump in case of dry running or similar situations.

By using the IO 50, the power supply to the pump can be closed manually, for example when
• there is no need for water supply
• the system requires service.

Note: For the number of solar modules required, please consult the sizing tool in Grundfos WinCAPS.

Fig. 11 SQFlex Solar
SQFlex Solar

- with CU 200 and level switch

The SQFlex Solar system allows solar energy to be stored as water in a reservoir.

SQFlex Solar water supply systems with a water reservoir are used where

• there is a need for water supply at night
• for short periods, the solar energy is insufficient to run the pump
• there is a need for a back-up water source.

Benefits

Combined with the CU 200, the level switch acts as a pump cut-out function when the water reservoir is full.

The CU 200 offers indication of

• full water reservoir (level switch activated)
• pump operation
• input power.

The CU 200 indicates operational stoppage in case of

• dry running
• service (see page 35)
• insufficient energy supply.

In addition, the system features

• easy installation
• maintenance confined to periodic cleaning of the solar panels.

Fig. 12 SQFlex Solar with CU 200 and level switch

1. SQF pump
2. Submersible drop cable
3. Cable clips
4. Straining wire
5. Wire clamp
6. Solar panels
7. Support structure
11. CU 200 SQFlex control unit
14. Water reservoir
15. Level switch

Note: For the number of solar modules required, please consult the sizing tool in Grundfos WinCAPS.
SQFlex Solar
- with back-up generator
During periods of limited solar energy, the SQFlex Solar water supply system provides reliable water supply. The system is connected to an external back-up generator via the IO 101.

The system switches automatically to operation
• via generator when
 – the energy supply from the solar panels is insufficient
• via solar panels when
 – the generator is stopped manually or
 – the generator runs out of fuel.

Benefits
The system offers water supply during the night or during periods of insufficient solar energy.

Other benefits of the system include
• easy to install
• maintenance confined to periodic cleaning of the solar panels
• few and simple components
• flexible in terms of energy supply.

Fig. 13 SQFlex Solar with back-up generator

Note: For the number of solar modules required, please consult the sizing tool in Grundfos WinCAPS.
SQFlex Solar

- with back-up batteries

During periods of limited solar energy, the SQFlex Solar system provides reliable water supply.

The supply of water is ensured by back-up batteries connected to the system via the charge controller.

The system is connected as shown in fig. 14.

- Power will be provided by the solar panels wired to produce 48-110 VDC (rated).
- Power from the solar panels will feed into a 48 VDC charge controller, which will regulate the current fed to the batteries.
- From the charge controller, power passes into the battery bank, which consists of the number of appropriately sized batteries, wired in series to achieve 48 VDC (rated) output.
- Power is drawn from the battery bank and routed through a CU 200.
 Option: An IO 50 or IO 101 is to be installed to enable disconnection of the DC voltage.
 If an IO 101 is installed, it is possible to add a generator to the system.
- Power is run from the CU 200 to the SQFlex pump.

Benefits
The system offers water supply during the night or during periods of insufficient solar energy.

Other benefits of the system include
- easy installation
- a minimum of maintenance
- few and simple components
- flexibility in terms of energy supply.

Fig. 14 SQFlex Solar with back-up batteries

1. SQF pump
2. Submersible drop cable
3. Cable clips
4. Straining wire
5. Wire clamp
6. Solar panels
7. Support structure
11. CU 200 SQFlex control unit
12. IO 101 SQFlex switch box (optional)
16. Charge controller
17. Batteries
18. Pressure switch
19. Pressure tank

Note: For the number of solar modules required, please consult the sizing tool in Grundfos WinCAPS.
SQFlex Wind

The SQFlex Wind system is based on wind energy as the only energy source for pump operation.

The system is suitable for installation in areas where the wind is almost constant seen over a period of time.

As the turbine noise level increases with the wind speed, installation of the wind turbine near a residence is not recommended.

The IO 102 makes it possible to slow down the wind turbine when

- there is no need for water supply
- the system requires service.

Benefits

- Easy to install
- A minimum of maintenance
- Few and simple components

Proper siting for wind turbines

For proper wind siting you must locate your Whisper wind turbine 20 ft (6 m) above any surrounding object within a 250 ft (76 m) (radius as shown in fig. 16.)

Wind turbine performance curves

Fig. 15 SQ FlexWind

Fig. 16 Proper wind turbine siting

Figures: Fig. 15 SQ FlexWind, Fig. 16 Proper wind turbine siting
SQFlex Wind
- with CU 200 and level switch

The SQFlex Wind system allows wind energy to be stored as water in a reservoir.

SQFlex Wind water supply systems with a water reservoir are used where

- for short periods, the wind energy is insufficient to run the pump
- there is a need for a back-up water source.

As the turbine noise level increases with the wind speed, installation of the wind turbine near a residence is not recommended.

Benefits

Combined with the CU 200, the level switch acts as a pump cut-out function when the water reservoir is full.

The CU 200 offers indication of

- full water reservoir (level switch activated)
- pump operation
- input power.

The CU 200 indicates operational stoppage in case of

- dry running
- service (see page 35)
- insufficient energy supply.

The IO 102 makes it possible to switch off the power supply in the system and to slow down or stop the wind turbine when

- there is no need for water supply
- the system requires service.

Other benefits of the system include

- easy installation
- a minimum of maintenance.

Fig. 17 SQFlex Wind with CU 200 and level switch

1. SQF pump
2. Submersible drop cable
3. Cable clips
4. Straining wire
5. Wire clamp
6. Wind turbine
7. IO 102 SQFlex breaker box
8. CU 200 SQFlex control unit
9. Water reservoir
10. Level switch
SQFlex Combo

- combination of solar and wind energy

The SQFlex Combo water supply system is ideal in areas where the solar and/or wind energy is sufficient to run the pump.

The energy supply to the pump is a combination of solar and wind energy.

As the turbine noise level increases with the wind speed, installation of the wind turbine near a residence is not recommended.

Benefits

The system offers water supply during the night or during periods of insufficient solar energy.

Other benefits of the system include

- easy to install
- maintenance confined to periodic cleaning of the solar panels
- few and simple components.

The IO 102 makes it possible to switch off the power supply in the system and to slow down or stop the wind turbine when

- there is no need for water supply
- the system requires service.

Fig. 18 SQFlex Combo – combination of solar and wind energy

Note: For the number of solar modules required, please consult the sizing tool in Grundfos WinCAPS.
SQFlex Combo

- with CU 200 and level switch

The SQFlex Combo system allows solar and wind energy to be stored as water in a reservoir.

SQFlex Combo water supply systems with a water reservoir are used where

- for short periods, the solar or wind energy is insufficient to run the pump
- there is a need for a back-up water source.

As the turbine noise level increases with the wind speed, installation of the wind turbine near a residence is not recommended.

Benefits

Combined with the CU 200, the level switch acts as a pump cut-out function when the water reservoir is full.

The CU 200 offers indication of

- full water reservoir (level switch activated)
- pump operation
- input power.

The CU 200 indicates operational stoppage in case of

- dry running
- service (see page 35)
- insufficient energy supply.

The IO 102 makes it possible to switch off the power supply in the system and to slow down or stop the wind turbine when

- there is no need for water supply
- the system requires service.

Other benefits of the system include

- easy installation
- a minimum of maintenance.

Fig. 19 SQFlex Combi with CU 200 and level switch

1. SQF pump
2. Submersible drop cable
3. Cable clips
4. Straining wire
5. Wire clamp
6. Solar panels
7. Support structure
8. Wind turbine
9. IO 102 SQFlex breaker box
10. CU 200 SQFlex control unit
11. Water reservoir
12. Level switch

Note: For the number of solar modules required, please consult the sizing tool in Grundfos WinCAPS.
SQFlex system

- with generator as power supply

The SQFlex water supply system is connected to a diesel or gasoline driven generator.

The generator must be running steadily before the pump is cut in.

Benefits

The system offers water supply 24 hours a day, independently of the weather.

Other benefits of the system include

- easy installation
- a minimum of maintenance required
- few and simple components.

Fig. 20 SQFlex system with generator as power supply.

1 SQF pump
2 Submersible drop cable
3 Cable clips
4 Straining wire
5 Wire clamp
10 Diesel or gasoline driven generator
4. Solar panel wiring

Methods of solar panel wiring

Solar panels can be connected in one of three methods:

1. Series wiring
2. Parallel wiring
3. Series/parallel wiring (a combination of the two)

The Grundfos SQFlex pump is most efficient at voltages of 120V and above, up to a max of 300V. To maximize pump performance connect panels to obtain at least 120V.

Series wiring

All solar panels have a negative (-) and a positive (+) terminal.

When wiring panels in series, voltages add and amperage stays the same.

To wire panels in series connect the positive terminal of one panel to the negative terminal of the next panel.

\[
\begin{array}{cccc}
\text{Panel} & \text{Panel} & \text{Panel} & \text{Panel} \\
\text{# 1} & \text{# 2} & \text{# 3} & \text{# 4} \\
+ & - & + & - \\
+ & - & + & - \\
\end{array}
\]

Fig. 21 Solar panel wiring in series

Panel voltages add in series, so if the panels in fig. 21 are rated at 70V (GF100), then the total voltage will be:

\[70 + 70 + 70 + 70 = 280V\]

Panel amperage remains the same, so if each panel produces 1.43 amps, then the total current will be 1.43 amps.

Panel wattage always adds, so if each panel is rated at 100W the total wattage (Watts = Volts x Amps) output will be:

\[100 + 100 + 100 + 100 = 400W\]

Parallel wiring

When wiring panels in parallel, results are the opposite of series wiring, that is, amperages add and voltage stays the same.

To wire panels in parallel, connect the positive terminal of each panel to the positive terminal of the other panels and negative terminal of each panel to the negative terminal of the other panels.

\[
\begin{array}{cccc}
\text{Panel} & \text{Panel} \\
\text{# 1} & \text{# 2} \\
+ & - \\
+ & - \\
\end{array}
\]

Fig. 22 Solar panel wiring in parallel

Panel voltage remains the same, so if the panels in fig. 22 produce 70V each, then the total output will be 70V.

Panel amperage adds in parallel, so if the panels in fig. 22 are rated at 1.43A, then the total current will be:

\[1.43 + 1.43 + 1.43 + 1.43 = 5.72A\]

Panel wattage always adds, so if each panel is rated at 100W the total wattage (Watts = Volts x Amps) output will be:

\[100 + 100 + 100 + 100 = 400W\]

Series/parallel circuits

A series/parallel circuit is simply two or more series circuits that are wired together in parallel.

\[
\begin{array}{cccc}
\text{Pair} & \text{Pair} \\
\text{# 1} & \text{# 2} \\
\text{Panel} & \text{Panel} \\
\text{# 1} & \text{# 2} \\
+ & - \\
+ & - \\
\end{array}
\]

Fig. 23 Solar panel wiring in series/parallel circuit

In fig. 23 two separate pairs of panels have been wired in series and each of these series pairs have been wired together in parallel.

To determine the total voltage and amp output of this array, consider first each pair of panels wired in series. Think of each pair as a single panel. Each panel has a rating of 70V, 1.43A and 100W. Remember that in series, voltage adds, while amperage remains the same. Pair #1 provides 70 + 70 = 140V and 1.43A. Pair #2 provides the same (continued on next page).
Now add the two pairs in parallel. Remember in parallel, voltage remains the same and amperage adds. Each pair produces 140V, so total voltage = 140V. Each pair produces 1.43A, so total amperage is 1.43 + 1.43 = 2.86A. Watts always add, so 100W x 4 = 400W.

Cable sizing chart

Since the SQFlex motor operates at peak efficiency with 120V or greater applied, we strongly recommend configuring panels to achieve 120V or greater.

Lower voltages result in greater losses in the drop cable, and it is important to the customer to make efficient use of every watt generated. Additionally, significant savings in drop cable costs can be realized by configuring for higher voltages.

<table>
<thead>
<tr>
<th>Panels</th>
<th>Power (Wp)</th>
<th>Voltage (Vmp)</th>
<th>14 AWG</th>
<th>12 AWG</th>
<th>10 AWG</th>
<th>Amps [Imp]</th>
<th>Series</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>70</td>
<td>290</td>
<td>461</td>
<td>733</td>
<td>1.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>140</td>
<td>580</td>
<td>922</td>
<td>1466</td>
<td>1.4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>210</td>
<td>871</td>
<td>1383</td>
<td>2199</td>
<td>1.4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>280</td>
<td>1161</td>
<td>1844</td>
<td>2932</td>
<td>1.4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>600</td>
<td>210</td>
<td>435</td>
<td>692</td>
<td>1099</td>
<td>2.9</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>600</td>
<td>140</td>
<td>193</td>
<td>307</td>
<td>489</td>
<td>4.3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>800</td>
<td>280</td>
<td>580</td>
<td>922</td>
<td>1466</td>
<td>2.9</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>800</td>
<td>140</td>
<td>145</td>
<td>231</td>
<td>366</td>
<td>5.7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>900</td>
<td>210</td>
<td>290</td>
<td>461</td>
<td>733</td>
<td>4.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>140</td>
<td>116</td>
<td>184</td>
<td>293</td>
<td>7.1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>1200</td>
<td>280</td>
<td>387</td>
<td>615</td>
<td>977</td>
<td>4.3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>1500</td>
<td>210</td>
<td>174</td>
<td>277</td>
<td>440</td>
<td>7.1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>1600</td>
<td>280</td>
<td>290</td>
<td>461</td>
<td>733</td>
<td>5.7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>1800</td>
<td>210</td>
<td>145</td>
<td>231</td>
<td>366</td>
<td>8.6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>2000</td>
<td>140</td>
<td>58</td>
<td>92</td>
<td>147</td>
<td>14.3</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Notes:

- Max. cable length in ft; uses a max. 3% voltage drop.
- Based on the Grundfos GF100 panel.
- Max. cable length between CU200 and SQFlex = 650 ft (198 m).
5. Performance curves

Curve conditions

Performance range, SQFlex Solar
The SQFlex Solar performance range shown on page 7 is based on
- solar radiation on a tilted surface (tilt angle of 20°)
- $H_T = 6 \text{ kWh/m}^2 \text{ per day}$
- ambient temperature: $+85 \degree F (+29 \degree C)$
- 20° northern latitude.

Performance range, SQFlex Wind
The SQFlex Wind performance range shown on page 7 is based on
- average wind speed, measured over one month
- calculations according to Weibull’s factor $k = 2$
- continuous operation over 24 hours.

Specific performance charts
The specific performance charts in the Performance Curves section of this booklet are based on the following guidelines:
- All curves show mean values.
- The curves must not be used as guarantee curves.
- Typical deviation: ±15 %.
- The measurements have been made at a water temperature of $+68 \degree F (+20 \degree C)$.
- The curves apply to a kinematic viscosity of $1 \text{ mm}^2/\text{s} (1 \text{ cSt})$. If the pump is used for liquids with a viscosity higher than that of water, this will reduce the head and increase the power consumption.

Pressure loss
The QH curves are inclusive of inlet and valve losses at actual speed.
Curve charts

3 SQF-2

Note: Max. P1 (W) shown on curve represents max. motor RPM.
Note: Max. P1 (W) shown on curve represents max. motor RPM.
Note: Max. P1 (W) shown on curve represents max. motor RPM.
Performance curves

25 SQF-3

Note: Max. P_1 (W) shown on curve represents max. motor RPM.

25 SQF-7
40 SQF-3

Note: Max. P1 (W) shown on curve represents max. motor RPM.
Note: Max. P_1 (W) shown on curve represents max. motor RPM.
6. Technical data

Dimensions and weights

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dimensions [in (mm)]</th>
<th>Net weight [lb]</th>
<th>Gross weight [lb]</th>
<th>Shipping volume [ft³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>B</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>3 SQF-2</td>
<td>47 (1194)</td>
<td>2.9 (74)</td>
<td>1" NPT</td>
<td>17</td>
</tr>
<tr>
<td>3 SQF-3</td>
<td>49 (1247)</td>
<td>2.9 (74)</td>
<td>1" NPT</td>
<td>17.5</td>
</tr>
<tr>
<td>6 SQF-2</td>
<td>48 (1219)</td>
<td>2.9 (74)</td>
<td>1" NPT</td>
<td>17.5</td>
</tr>
<tr>
<td>6 SQF-3</td>
<td>51 (1296)</td>
<td>2.9 (74)</td>
<td>1" NPT</td>
<td>1.8</td>
</tr>
<tr>
<td>11 SQF-2</td>
<td>49 (1247)</td>
<td>2.9 (74)</td>
<td>1 1/4" NPT</td>
<td>18</td>
</tr>
<tr>
<td>16 SQF-10</td>
<td>38 (965)</td>
<td>3.9 (100)</td>
<td>1 1/4" NPT</td>
<td>21</td>
</tr>
<tr>
<td>25 SQF-3</td>
<td>32 (813)</td>
<td>3.9 (100)</td>
<td>1 1/2" NPT</td>
<td>18</td>
</tr>
<tr>
<td>25 SQF-7</td>
<td>35 (889)</td>
<td>3.9 (100)</td>
<td>1 1/2" NPT</td>
<td>19.5</td>
</tr>
<tr>
<td>40 SQF-3</td>
<td>36 (915)</td>
<td>3.9 (100)</td>
<td>2" NPT</td>
<td>21</td>
</tr>
<tr>
<td>40 SQF-5</td>
<td>40 (1016)</td>
<td>3.9 (100)</td>
<td>2" NPT</td>
<td>23</td>
</tr>
<tr>
<td>60 SQF-3</td>
<td>39 (991)</td>
<td>3.9 (100)</td>
<td>2" NPT</td>
<td>24</td>
</tr>
</tbody>
</table>

* Pump complete
SQF pump

Power supply to pump
30-300 VDC, PE.
1 x 90-240 V –10 % / +6 %, 50/60 Hz, PE.

Run-up time
Depends on the energy source.

Start/stop
No limitation to the number of starts/stops per hour.

Enclosure class
IP 68.

Motor protection
Built into the pump.
Protection against:
• dry running by means of a water level electrode
• overvoltage and undervoltage
• overload
• overtemperature.

Conductivity
≥ 70 μs/cm (micro siemens).

Sound pressure level
The sound pressure level of the pump is lower than the limiting values stated in the EC Machinery Directive.

Radio noise
The SQF complies with the EMC Directive 89/336/EEC. Approved according to the standards EN 61000-6-2 and EN 61000-6-3.

Reset function
The SQF can be reset via the CU 200 or by disconnecting the power supply for 1 minute.

Power factor
PF = 1.

Operation via generator
Voltage: 115-230 VAC –10 % / +6 %.
The generator output must be:
• minimum 1000 W (helical rotor pumps)
• minimum 1500 W (centrifugal pumps).

Earth-leakage circuit breaker
If the pump is connected to an electric installation where an earth-leakage circuit breaker (ELCB) is used as an additional protection, this circuit breaker must trip out when earth fault currents with DC content (pulsating DC) occur.

Borehole diameter
3 SQF, 6 SQF, 11 SQF: Minimum: 3 in.
16 SQF, 25 SQF, 40 SQF, 60 SQF: Minimum: 4 in.

Installation depth
Minimum: The pump must be completely submerged in the pumped liquid.
Maximum: 500 ft below the static water table (220 psi).

Suction strainer
Holes of the suction strainer:
3 SQF, 6 SQF, 11 SQF: ø0.090 in.
16 SQF, 25 SQF: ø0.10 in.
40 SQF, 60 SQF: ø0.16 in x 0.80 in.

Pumped liquids
pH 5 to 9.
Sand content up to 50 ppm.

Marking
CE.

Motor

Electrical data
30-300 VDC or 1 x 90-240 VAC, 50/60 Hz

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Motor type</th>
<th>Max. power input P_1 [W]</th>
<th>Max. current [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 SQF-2</td>
<td>MSF 3</td>
<td>1400</td>
<td>8.4</td>
</tr>
<tr>
<td>3 SQF-3</td>
<td>MSF 3</td>
<td>1400</td>
<td>8.4</td>
</tr>
<tr>
<td>6 SQF-2</td>
<td>MSF 3</td>
<td>1400</td>
<td>8.4</td>
</tr>
<tr>
<td>6 SQF-3</td>
<td>MSF 3</td>
<td>1400</td>
<td>8.4</td>
</tr>
<tr>
<td>11 SQF-2</td>
<td>MSF 3</td>
<td>1400</td>
<td>8.4</td>
</tr>
<tr>
<td>16 SQF-10</td>
<td>MSF 3</td>
<td>1400</td>
<td>8.4</td>
</tr>
<tr>
<td>25 SQF-3</td>
<td>MSF 3</td>
<td>1400</td>
<td>8.4</td>
</tr>
<tr>
<td>25 SQF-7</td>
<td>MSF 3</td>
<td>1400</td>
<td>8.4</td>
</tr>
<tr>
<td>40 SQF-3</td>
<td>MSF 3</td>
<td>1400</td>
<td>8.4</td>
</tr>
<tr>
<td>40 SQF-5</td>
<td>MSF 3</td>
<td>1400</td>
<td>8.4</td>
</tr>
<tr>
<td>60 SQF-3</td>
<td>MSF 3</td>
<td>1400</td>
<td>8.4</td>
</tr>
</tbody>
</table>
CU 200 SQFlex control unit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>30-300 VDC, 8.4 A. 90-240 VAC, 8.4 A.</td>
</tr>
<tr>
<td>Power consumption</td>
<td>5 W.</td>
</tr>
<tr>
<td>Current consumption</td>
<td>Maximum 130 mA.</td>
</tr>
<tr>
<td>Pump cable</td>
<td>Maximum length between the CU 200 and the pump: 650 ft. Maximum length between the CU 200 and the level switch: 2000 ft.</td>
</tr>
<tr>
<td>Back-up fuse</td>
<td>Maximum 10 A.</td>
</tr>
<tr>
<td>Radio noise</td>
<td>The CU 200 complies with the EMC Directive 89/336/EEC. Approved according to the standards EN 55014 and 55014-2.</td>
</tr>
<tr>
<td>Relative air humidity</td>
<td>95 %</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 55.</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>During operation: −22 °F to +122 °F (−30 °C to +50 °C). During storage: −22 °F to +140 °F (−30 °C to 60 °C).</td>
</tr>
<tr>
<td>Marking</td>
<td>CE.</td>
</tr>
<tr>
<td>Weight</td>
<td>4.5 lb.</td>
</tr>
</tbody>
</table>

IO 50 SQFlex switch box

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Maximum 300 VDC, 8.4 A. Maximum 265 VAC, 8.4 A.</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 66.</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>During operation: −22 °F to +122 °F (−30 °C to 50 °C). During storage: −22 °F to +140 °F (−30 °C to 60 °C).</td>
</tr>
<tr>
<td>Marking</td>
<td>CE.</td>
</tr>
</tbody>
</table>

IO 101 SQFlex switch box

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>**115 VAC −15 % / +10 %, 50/60 Hz (internal relay). Maximum 225 VDC, 8.4 A. Maximum 115 VAC, 8.4 A. **230 VAC −15 % / +10 %, 50/60 Hz (internal relay). Maximum 225 VDC, 7 A. Maximum 265 VAC, 7 A.</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 55.</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>During operation: −22 °F to +122 °F (−30 °C to 50 °C). During storage: −22 °F to +140 °F (−30 °C to 60 °C).</td>
</tr>
<tr>
<td>Marking</td>
<td>CE.</td>
</tr>
</tbody>
</table>

IO 102 SQFlex breaker box

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Maximum 225 VDC, 8.4 A. Maximum 265 VAC, 8.4 A.</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 55.</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>During operation: −22 °F to +122 °F (−30 °C to 50 °C). During storage: −22 °F to +140 °F (−30 °C to 60 °C).</td>
</tr>
<tr>
<td>Marking</td>
<td>CE.</td>
</tr>
</tbody>
</table>

Charge controller

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (solar input)</td>
<td>Maximum 110 VDC.</td>
</tr>
<tr>
<td>Current (solar input)</td>
<td>Maximum 15 A.</td>
</tr>
<tr>
<td>Output current (load)</td>
<td>Maximum 15 A.</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>−40 °F to +140 °F (−40 °C to +60 °C).</td>
</tr>
<tr>
<td>Weight</td>
<td>0.75 lb.</td>
</tr>
</tbody>
</table>
7. Accessories

CU 200 SQFlex control unit

The CU 200 is a combined status, control and communication unit especially developed for the SQFlex system. The CU 200 also enables connection of a level switch.

The CU 200 incorporates cable entries for
- power supply connection (pos. 6)
- pump connection (pos. 7)
- earth connection (pos. 8)
- level switch connection (pos. 9).

(The position numbers in brackets refer to fig. 24.)

Communication between the CU 200 and the pump takes place via the pump power supply cable. This is called mains borne signalling (or Power Line Communication), and this principle means that no extra cables between the CU 200 and the pump are required.

It is possible to start, stop and reset the pump with the on/off button (pos. 1). The CU 200 offers
- system monitoring
- alarm indication.

The following indications allow the operation of the pump to be monitored:
- water reservoir is full (level switch) (pos. 2)
- pump is running (pos. 3)
- input power (pos. 11).

The CU 200 offers the following alarm indications:
- Dry running (pos. 10)
- Service needed (pos. 5) in case of
 - no contact to pump
 - overvoltage
 - overtemperature
 - overload.

In addition, the CU 200 shows the symbols of the energy supply options (pos. 4).
Fig. 26 Electrical connections, CU 200

Level switch input
- High water level: Contact is closed.
- Low water level: Contact is open.
IO 50 SQFlex switch box

<table>
<thead>
<tr>
<th>Product</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO 50 SQFlex</td>
<td>96959028</td>
</tr>
</tbody>
</table>

The IO 50 is designed specifically for solar-powered SQFlex systems.

The IO 50 enables manual starting and stopping of the pump in an SQFlex Solar system and functions as a connection box joining all necessary cables.

Fig. 27 IO 50, dimensional sketch

Fig. 28 Wiring diagram

IO 101 SQFlex switch box

<table>
<thead>
<tr>
<th>Product</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO 101 115 VAC SQFlex</td>
<td>96481502</td>
</tr>
<tr>
<td>IO 101 230 VAC SQFlex</td>
<td>96475074</td>
</tr>
</tbody>
</table>

The IO 101 is designed specifically for solar-powered SQFlex systems.

The IO 101 enables the connection of a back-up generator in case of insufficient solar energy. The switching between solar power and generator must be made manually.

In case the generator is stopped manually or runs out of fuel, the IO 101 will automatically change over to the solar panels.

The IO 101 functions as a connection box joining all necessary cables.

Fig. 29 IO 101, dimensional sketch

Fig. 30 Electrical connections

IO 102 SQFlex breaker box

<table>
<thead>
<tr>
<th>Product</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO 102 SQFlex for wind turbine</td>
<td>96475065</td>
</tr>
</tbody>
</table>

The IO 102 is designed specifically for wind-powered SQFlex systems.

The IO 102 enables manual starting and stopping of the pump in an SQFlex Wind system or an SQFlex Combo system.

The on/off switch has a built-in "electrical brake" for the turbine. When the switch is in "off" position, the turbine stops or slows down.

The IO 102 rectifies the three-phase AC voltage from the wind turbine into DC voltage.
Furthermore, the IO 102 enables the combination of wind energy from the wind turbine and solar energy from the solar panels.

The IO 102 functions as a connection box joining all necessary cables.

The charge controller is a fully automatic battery charger and the only setting required is the selection of battery type.

There are three battery types to choose from:
- gel battery
- sealed battery
- flooded battery.

The charge controller enables manual disconnection of the pump, the solar modules or both at the same time.

Submersible drop cables

The submersible drop cables for SQF pumps are approved for use with potable water (KTW-approved). The cables are made of EPR (ethylene-propylene rubber).

Sizing of cable

Use the following formula:

\[
L = \frac{\Delta P \times q \times V_{mp}^2}{W_p \times 0.00162} \text{[ft]}
\]

where
- \(L\) = Length of cable [ft]
- \(\Delta P\) = Power loss [%]
- \(q\) = Cross section of submersible drop cable [in²]
- \(V_{mp}\) = Maximum power voltage [V]
- \(W_p\) = Watt peak [Wp]

The sizing tool in Grundfos WinCAPS makes it possible to calculate the exact losses.

Charge controller

<table>
<thead>
<tr>
<th>Product</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge controller</td>
<td>96023194</td>
</tr>
</tbody>
</table>

The charge controller is used when a battery backup system is installed with an SQFlex pumping system. These systems are typically used in applications where the pump is not running during most of the peak sun hours of the day, or where it is impossible or impractical to store large volumes of water. Examples include remote homes or cabins, automatic livestock waterers and very low-yielding wells.
Whisper 200 wind turbine

Note: The IO 102 functions as a breaker box and must be included in wind-powered SQFlex systems. The IO 102 must be ordered separately.

Wind turbine selection

![Graph showing power output vs. wind speed](image)

- **Whisper 200 wind turbine**
 - Product number: 96472120

Specifications

- **Rotor diameter:** 9 ft (2.75 m)
- **Weight:** 65 lb.
- **Mount:** 2.5” Schedule 40.
- **Start-up wind speed:** 7 mph.

Tower kit for Whisper 200

![Diagram of tower kit](image)

- **Tower kit for Whisper 200**
 - Product number: 96475069

Tower installation kit

- **Tower installation kit**
 - Product number: 96475069

Note: The gin pole is not included.

Tower pipe selection

The tower kit is designed to use a 2½” outside diameter pipe.

The following table shows the recommended wall thickness of the pipes, depending on the maximum speed of the wind at the location:

<table>
<thead>
<tr>
<th>Maximum wind speed [mph]</th>
<th>Recommended wall thickness [in (mm)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.090 (2.29)</td>
</tr>
<tr>
<td>90</td>
<td>0.120 (3.05)</td>
</tr>
<tr>
<td>110</td>
<td>0.140 (3.56)</td>
</tr>
</tbody>
</table>

The wall thickness of the gin pole must be minimum 0.062 in.
Pipe pieces needed

Tower kit, 30 ft
• One 13 ft (3.9 m) length of pipe for tower.
• One 17 ft (5.2 m) length of pipe for tower.
• One 15 ft (4.5 m) length of pipe for gin pole.

Tower kit, 50 ft
• Two 15 ft (4.5 m) lengths of pipe for tower.
• One 20 ft (6.1 m) length of pipe for tower.
• One 19 ft (5.8 m) length of pipe for gin pole.

Auger/anchor

<table>
<thead>
<tr>
<th>Description</th>
<th>Length [ft]</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auger/anchor (4 pcs.)</td>
<td>4 (1.2 m)</td>
<td>96475068</td>
</tr>
</tbody>
</table>

Grease

<table>
<thead>
<tr>
<th>Description</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease for lubrication of motor shaft</td>
<td>96037562</td>
</tr>
</tbody>
</table>

Level switch

<table>
<thead>
<tr>
<th>Description</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level switch</td>
<td>010748</td>
</tr>
</tbody>
</table>

High water level: Contact is closed.
Low water level: Contact is open.
GF100 solar panel

Fig. 33 GF100 solar panel

GF100 solar panel - dimensional sketch

<table>
<thead>
<tr>
<th>Description</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF100 solar panel (2 panels per package)</td>
<td>97790619</td>
</tr>
<tr>
<td>2-panel pole mount support 3" NPT</td>
<td>98042616</td>
</tr>
<tr>
<td>Inter-array wire kit</td>
<td>91126023</td>
</tr>
<tr>
<td>Array to controller wire kit</td>
<td>91126024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak power (P_{max})</td>
<td>100 [W]</td>
</tr>
<tr>
<td>Voltage (V_{mp})</td>
<td>70 [V]</td>
</tr>
<tr>
<td>Current (I_{mp})</td>
<td>1.43 [A]</td>
</tr>
<tr>
<td>Open circuit voltage (V_{oc})</td>
<td>96 [V]</td>
</tr>
<tr>
<td>Short circuit current (I_{sc})</td>
<td>1.7 [A]</td>
</tr>
<tr>
<td>Reference cell temperature (T_{ref})</td>
<td>77 °F (25 °C)</td>
</tr>
<tr>
<td>Solar irradiation at reference cell temperature (I_{tref})</td>
<td>1000 [W/m²]</td>
</tr>
<tr>
<td>Net weight</td>
<td>43.7 [lbs] / 19.8 [kg]</td>
</tr>
<tr>
<td>Shipping volume</td>
<td>2.8 [ft³] / 0.08 [m³]</td>
</tr>
</tbody>
</table>
8. Further product documentation

WebCAPS

WebCAPS contains detailed information on more than 185,000 Grundfos products in more than 22 languages.

In WebCAPS, all information is divided into 6 sections:

- Catalog
- Literature
- Service
- Sizing
- Replacement
- CAD drawings.

Catalog

This section is based on fields of application and pump types, and contains:

- technical data
- curves (QH, Eta, P1, P2, etc.) which can be adapted to the density and viscosity of the pumped liquid and show the number of pumps in operation
- product photos
- dimensional drawings
- wiring diagrams
- quotation texts, etc.

Literature

In this section you can access all the latest documents of a given pump, such as:

- data booklets
- installation and operating instructions
- service documentation, such as Service kit catalog and Service kit instructions
- quick guides
- product brochures, etc.

Service

This section contains an easy-to-use interactive service catalog. Here you can find and identify service parts of both existing and discontinued Grundfos pumps. Furthermore, this section contains service videos showing you how to replace service parts.
Further product documentation

WinCAPS

WinCAPS is a Windows-based Computer Aided Product Selection program containing detailed information on more than 185,000 Grundfos products in more than 22 languages.

The program contains the same features and functions as WebCAPS, but is an ideal solution if no Internet connection is available.

WinCAPS is available on CD-ROM and updated once a year.

Sizing

This section is based on different fields of application and installation examples, and gives easy step-by-step instructions on how to:

- select the most suitable and efficient pump for your installation
- carry out advanced calculations based on energy consumption, payback periods, load profiles, life cycle costs, etc.
- analyze your selected pump via the built-in life cycle cost tool
- determine the flow velocity in wastewater applications, etc.

Replacement

In this section you find a guide to selecting and comparing replacement data of an installed pump in order to replace it with a more efficient Grundfos pump.

The section contains replacement data on a wide range of pumps produced by other manufacturers than Grundfos.

Based on an easy step-by-step guide, you can compare Grundfos pumps with the one you have installed on your site. When you have specified the installed pump, the guide will suggest a number of Grundfos pumps which can improve both comfort and efficiency.

CAD drawings

In this section it is possible to download 2-dimensional (2D) and 3-dimensional (3D) CAD drawings of most Grundfos pumps.

These formats are available in WebCAPS:

- **2-dimensional drawings:**
 - .dxf, wireframe drawings
 - .dwg, wireframe drawings

- **3-dimensional drawings:**
 - .dwg, wireframe drawings (without surfaces)
 - .stp, solid drawings (with surfaces)
 - .eprt, E-drawings
This page intentionally left blank.
This page intentionally left blank.
This page intentionally left blank.